login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of zeta'(-7) (the derivative of Riemann's zeta function at -7) (negated).
17

%I #14 Mar 19 2024 07:18:49

%S 0,0,0,7,2,8,6,4,2,6,8,0,1,5,9,2,4,0,6,5,2,4,6,7,2,3,3,3,5,4,6,5,0,3,

%T 6,0,6,1,1,9,0,2,8,8,7,7,2,0,9,2,5,4,1,8,3,1,8,6,3,6,3,8,6,1,5,4,1,4,

%U 2,5,9,7,5,4,5,5,2,7,3,0,9,9,1,3,0,2,3,2,4,6,4,4,1,6,8,0,4,4,9,3,7,9,6,0,6,5,4

%N Decimal expansion of zeta'(-7) (the derivative of Riemann's zeta function at -7) (negated).

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.

%H G. C. Greubel, <a href="/A259072/b259072.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann Zeta Function</a>

%H <a href="/wiki/Index_to_constants#Start_of_section_Z">Index entries for constants related to zeta</a>

%F zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.

%F zeta'(-7) = -121/11200 - log(A(7)).

%F Equals -121/11200 + (gamma + log(2*Pi))/240 - 315*Zeta'(8)/(8*Pi^8), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Jul 25 2015

%e -0.000728642680159240652467233354650360611902887720925418318636386154...

%t Join[{0, 0, 0}, RealDigits[Zeta'[-7], 10, 104] // First]

%o (PARI) -zeta'(-7) \\ _Charles R Greathouse IV_, Dec 04 2016

%K nonn,cons

%O 0,4

%A _Jean-François Alcover_, Jun 18 2015