login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259071 Decimal expansion of zeta'(-6) (the derivative of Riemann's zeta function at -6) (negated). 21
0, 0, 5, 8, 9, 9, 7, 5, 9, 1, 4, 3, 5, 1, 5, 9, 3, 7, 4, 5, 0, 6, 2, 9, 8, 7, 7, 4, 0, 8, 3, 9, 2, 0, 2, 5, 5, 7, 9, 8, 0, 1, 5, 3, 4, 6, 2, 0, 1, 5, 7, 1, 9, 5, 8, 6, 5, 2, 3, 9, 3, 9, 2, 2, 0, 6, 3, 5, 9, 7, 0, 3, 7, 5, 9, 4, 2, 4, 9, 0, 5, 7, 2, 3, 0, 2, 3, 8, 6, 3, 0, 0, 7, 5, 4, 2, 2, 5, 8, 3, 8, 5, 3, 6, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1500

Eric Weisstein's MathWorld, Riemann Zeta Function.

Wikipedia, Riemann Zeta Function

FORMULA

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.

zeta'(-6) = -45*zeta(7)/(8*Pi^6) = -log(A(6)).

EXAMPLE

-0.0058997591435159374506298774083920255798015346201571958652393922063597...

MATHEMATICA

Join[{0, 0}, RealDigits[Zeta'[-6], 10, 104] // First]

PROG

(PARI) zeta'(-6) \\ Altug Alkan, Dec 11 2015

CROSSREFS

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259072 (zeta'(-7)), A259073 (zeta'(-8)).

Sequence in context: A257833 A021633 A178309 * A205862 A293795 A165991

Adjacent sequences:  A259068 A259069 A259070 * A259072 A259073 A259074

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 00:05 EDT 2020. Contains 333392 sequences. (Running on oeis4.)