login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259069
Decimal expansion of zeta'(-4) (the derivative of Riemann's zeta function at -4).
14
0, 0, 7, 9, 8, 3, 8, 1, 1, 4, 5, 0, 2, 6, 8, 6, 2, 4, 2, 8, 0, 6, 9, 6, 6, 7, 0, 7, 9, 8, 7, 8, 9, 3, 0, 3, 9, 0, 5, 2, 3, 7, 6, 9, 3, 3, 6, 2, 2, 9, 8, 8, 7, 6, 4, 1, 7, 7, 0, 4, 7, 3, 9, 7, 1, 4, 0, 2, 8, 7, 4, 0, 2, 8, 1, 8, 7, 8, 6, 5, 7, 9, 5, 2, 5, 4, 3, 9, 6, 1, 9, 6, 9, 2, 8, 6, 9, 8, 2, 0, 3, 9, 6, 4, 4, 4
OFFSET
0,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, pp. 136-137.
FORMULA
zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-4) = 3*zeta(5)/(4*Pi^4) = -log(A(4)), where A(4) is A243264.
EXAMPLE
0.00798381145026862428069667079878930390523769336229887641770473971402874...
MATHEMATICA
Join[{0, 0}, RealDigits[Zeta'[-4], 10, 104] // First]
CROSSREFS
Sequence in context: A256924 A377606 A348668 * A209328 A228049 A154943
KEYWORD
nonn,cons
AUTHOR
STATUS
approved