login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259069 Decimal expansion of zeta'(-4) (the derivative of Riemann's zeta function at -4). 19
0, 0, 7, 9, 8, 3, 8, 1, 1, 4, 5, 0, 2, 6, 8, 6, 2, 4, 2, 8, 0, 6, 9, 6, 6, 7, 0, 7, 9, 8, 7, 8, 9, 3, 0, 3, 9, 0, 5, 2, 3, 7, 6, 9, 3, 3, 6, 2, 2, 9, 8, 8, 7, 6, 4, 1, 7, 7, 0, 4, 7, 3, 9, 7, 1, 4, 0, 2, 8, 7, 4, 0, 2, 8, 1, 8, 7, 8, 6, 5, 7, 9, 5, 2, 5, 4, 3, 9, 6, 1, 9, 6, 9, 2, 8, 6, 9, 8, 2, 0, 3, 9, 6, 4, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, pp. 136-137.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1500

Eric Weisstein's MathWorld, Riemann Zeta Function.

Wikipedia, Riemann Zeta Function

FORMULA

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.

zeta'(-4) = 3*zeta(5)/(4*Pi^4) = -log(A(4)), where A(4) is A243264.

EXAMPLE

0.00798381145026862428069667079878930390523769336229887641770473971402874...

MATHEMATICA

Join[{0, 0}, RealDigits[Zeta'[-4], 10, 104] // First]

CROSSREFS

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)).

Sequence in context: A010729 A182688 A256924 * A209328 A228049 A154943

Adjacent sequences:  A259066 A259067 A259068 * A259070 A259071 A259072

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 19:43 EDT 2020. Contains 333127 sequences. (Running on oeis4.)