login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171274
Matrix inverse of A142458.
1
1, -1, 1, 7, -8, 1, -235, 273, -39, 1, 35353, -41116, 5928, -166, 1, -22683409, 26382125, -3804940, 106900, -677, 1, 60147266239, -69954818244, 10089231945, -283474190, 1796973, -2724, 1, -648088191536203, 753764796604717, -108711714513099, 3054442698125, -19362601277, 29358651, -10915, 1
OFFSET
1,4
FORMULA
Sum_{j=k..n} T(n,j)*A142458(j,k) = delta(n,k), the Kronecker delta.
T(n, k) = (-1)*Sum_{j=k+1..n} T(n, j)*A142458(j, k), with T(n, n) = 1. - R. J. Mathar, Jun 04 2011
From G. C. Greubel, Mar 18 2022: (Start)
Sum_{k=1..n} T(n, k) = 0^(n-1).
T(n, n-1) = (-1)*A142458(n, 2). (End)
EXAMPLE
The triangle starts as:
1;
-1, 1;
7, -8, 1;
-235, 273, -39, 1;
35353, -41116, 5928, -166, 1;
-22683409, 26382125, -3804940, 106900, -677, 1;
60147266239, -69954818244, 10089231945, -283474190, 1796973, -2724, 1;
MAPLE
A142458:= proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (3*n-3*k+1)*procname(n-1, k-1)+(3*k-2)*procname(n-1, k) ; end if; end proc:
A171274 := proc(n, k) option remember; if k=n then 1; else -add( procname(n, j)*A142458(j, k), j=k+1..n); end if; end proc:
seq(seq(A171274(n, k), k=1..n), n=1..10); # R. J. Mathar, Jun 04 2011
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142458[n_, k_]:= T[n, k, 3];
A171274[n_, k_]:= A171274[n, k]= If[k==n, 1, -Sum[A171274[n, j]*A142458[j, k], {j, k+1, n}] ];
Table[A171274[n, k], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
PROG
(Sage)
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n, k): return T(n, k, 3)
@CachedFunction
def A171274(n, k):
if (k==n): return 1
else: return (-1)*sum( A171274(n, j)*A142458(j, k) for j in (k+1..n) )
flatten([[A171274(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 18 2022
CROSSREFS
Cf. A142458.
Sequence in context: A258947 A360381 A216207 * A378350 A126625 A154169
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula and Mats Granvik, Dec 06 2009
STATUS
approved