login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126625
Decimal expansion of x^x^x^x^... when x = 11/10.
1
1, 1, 1, 1, 7, 8, 2, 0, 1, 1, 0, 4, 1, 8, 4, 3, 3, 2, 2, 2, 4, 4, 8, 6, 2, 6, 7, 5, 3, 5, 0, 5, 3, 3, 5, 4, 0, 1, 3, 8, 7, 9, 3, 0, 2, 0, 9, 6, 4, 7, 4, 2, 2, 4, 4, 4, 1, 1, 0, 8, 6, 6, 6, 1, 3, 8, 8, 7, 6, 0, 3, 2, 5, 5, 7, 6, 9, 2, 8, 6, 6, 4, 0, 5, 9, 4, 4, 8, 9, 8, 4, 1, 5, 0, 0, 1, 2, 4, 7, 5, 7, 5, 2, 1, 3
OFFSET
1,5
COMMENTS
Suggested by a remark in the Applegate et al. paper.
REFERENCES
David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
LINKS
David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
EXAMPLE
1.1117820110418433222448626753505335401387930...
MAPLE
x:= LambertW(log(10/11))/log(10/11)/10:
s:= convert(evalf(x, 140), string):
seq(parse(s[n+1]), n=1..120); # Alois P. Heinz, Nov 08 2015
MATHEMATICA
RealDigits[-ProductLog[-Log[11/10]]/(10*Log[11/10]), 10, 105][[1]] (* Jean-François Alcover, Feb 18 2016 *)
CROSSREFS
Sequence in context: A216207 A171274 A378350 * A154169 A245260 A128755
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Feb 10 2007
STATUS
approved