login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171270
a(n) is the only number m such that m = pi(1^(1/n)) + pi(2^(1/n)) + ... + pi(m^(1/n)).
1
3, 11, 33, 95, 273, 791, 2313, 6815, 20193, 60071, 179193, 535535, 1602513, 4799351, 14381673, 43112255, 129271233, 387682631, 1162785753, 3487832975, 10462450353, 31385253911, 94151567433, 282446313695, 847322163873
OFFSET
1,1
COMMENTS
We can easily prove that a(n) = 3^n + 2^n - 2.
FORMULA
a(n) = 3^n + 2^n - 2.
G.f.: x*(3-7*x)/((1-3*x)*(1-2*x)*(1-x)). - Vincenzo Librandi, Mar 03 2014
EXAMPLE
pi(1) + pi(2) + pi(3)=3 so a(1)=3.
MAPLE
A171270:=n->3^n+2^n-2; seq(A171270(n), n=1..30); # Wesley Ivan Hurt, Feb 25 2014
MATHEMATICA
Table[3^n+2^n-2, {n, 26}]
CoefficientList[Series[(3 - 7 x)/((1 - 3 x) (1 - 2 x) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 03 2014 *)
LinearRecurrence[{6, -11, 6}, {3, 11, 33}, 30] (* Harvey P. Dale, Feb 28 2017 *)
PROG
(PARI) a(n)=3^n+2^n-2 \\ Charles R Greathouse IV, Jun 19 2013
(Magma) [3^n+2^n-2: n in [1..30]]; // Vincenzo Librandi, Mar 03 2014
CROSSREFS
Cf. A000720.
Sequence in context: A288038 A186308 A352102 * A182879 A124640 A081673
KEYWORD
easy,nice,nonn
AUTHOR
Farideh Firoozbakht, May 09 2010
STATUS
approved