login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the only number m such that m = pi(1^(1/n)) + pi(2^(1/n)) + ... + pi(m^(1/n)).
1

%I #22 Mar 11 2024 23:11:19

%S 3,11,33,95,273,791,2313,6815,20193,60071,179193,535535,1602513,

%T 4799351,14381673,43112255,129271233,387682631,1162785753,3487832975,

%U 10462450353,31385253911,94151567433,282446313695,847322163873

%N a(n) is the only number m such that m = pi(1^(1/n)) + pi(2^(1/n)) + ... + pi(m^(1/n)).

%C We can easily prove that a(n) = 3^n + 2^n - 2.

%H Vincenzo Librandi, <a href="/A171270/b171270.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).

%F a(n) = 3^n + 2^n - 2.

%F G.f.: x*(3-7*x)/((1-3*x)*(1-2*x)*(1-x)). - _Vincenzo Librandi_, Mar 03 2014

%e pi(1) + pi(2) + pi(3)=3 so a(1)=3.

%p A171270:=n->3^n+2^n-2; seq(A171270(n), n=1..30); # _Wesley Ivan Hurt_, Feb 25 2014

%t Table[3^n+2^n-2,{n,26}]

%t CoefficientList[Series[(3 - 7 x)/((1 - 3 x) (1 - 2 x) (1 - x)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Mar 03 2014 *)

%t LinearRecurrence[{6,-11,6},{3,11,33},30] (* _Harvey P. Dale_, Feb 28 2017 *)

%o (PARI) a(n)=3^n+2^n-2 \\ _Charles R Greathouse IV_, Jun 19 2013

%o (Magma) [3^n+2^n-2: n in [1..30]]; // _Vincenzo Librandi_, Mar 03 2014

%Y Cf. A000720.

%K easy,nice,nonn

%O 1,1

%A _Farideh Firoozbakht_, May 09 2010