login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that phi(n) = 3*phi(n-1).
3

%I #32 Sep 08 2022 08:46:15

%S 7,13,19,37,73,91,97,109,163,193,433,487,577,703,769,793,925,1153,

%T 1297,1459,2593,2917,3457,3889,4699,5551,6697,7999,8701,10369,10591,

%U 11803,12289,16471,17497,18433,33251,39367,52489,56791,79249,124357,127927,137899

%N Numbers n such that phi(n) = 3*phi(n-1).

%C Prime terms are in A058383.

%C See A266276(n) = the smallest numbers k such that phi(k) = n * phi(k-1) for n >=1: 2, 3, 7, 1261, 11242771, ...

%C Number of terms < 10^k: 1, 7, 17, 29, 41, 86, 205, 446, 1001, 2295, ..., . - _Robert G. Wilson v_, Jan 24 2016

%C All terms are == +-1 (mod 6) but mostly 1 (> 95%). - _Robert G. Wilson v_, Jan 24 2016

%H Robert G. Wilson v, <a href="/A266268/b266268.txt">Table of n, a(n) for n = 1..2467</a> (first 405 terms from G. C. Greubel)

%F a(n) = A067143(n) + 1.

%e 19 is in the sequence because phi(19) = 18 = 3*phi(18) = 3*6.

%t Select[Range[5000], EulerPhi[ # ]==3*EulerPhi[ #-1]&] (* _G. C. Greubel_, Dec 26 2015 *)

%o (Magma) [n: n in [2..2*10^5] | EulerPhi(n) eq 3*EulerPhi(n-1)]; // _Vincenzo Librandi_, Dec 26 2015

%o (PARI) isok(n) = eulerphi(n) == 3*eulerphi(n-1); \\ _Michel Marcus_, Dec 27 2015

%o (PARI) lista(nn) = for(n=1, nn, if(eulerphi(n) == 3*eulerphi(n-1), print1(n, ", "))); \\ _Altug Alkan_, Jan 24 2016

%Y Cf. A000010, A058383, A171271 (numbers n such that phi(n) = 2*phi(n-1)), A266276.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Dec 26 2015