login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058388
Total number of interior nodes in all essentially parallel series-parallel networks with n labeled edges, multiple edges not allowed.
3
0, 0, 0, 3, 14, 195, 2059, 31150, 489012, 9073638, 183490118, 4135560660, 101421574440, 2706766547628, 77860733488732, 2405136817507216, 79353915366944784, 2786110796782734528, 103703080088989729280, 4079350129335095498048
OFFSET
0,4
REFERENCES
J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence I_Q(n)*Q_pi).
FORMULA
Let Q, R = Q-log(1+x), V=Q+R be the e.g.f.'s for A058379, A058380, A058381 resp. E.g.f.'s for A058475, A058406, A058388 are E_V = (V*Q-R)/(1-V), E_R = E_V/(1+V), E_Q = (E_V+V)/(1+V)-Q.
MATHEMATICA
max = 19; q = CoefficientList[ InverseSeries[ Series[-1 + E^(1 + 2*a - E^a), {a, 0, max}], x], x]*Table[x^k, {k, 0, max}] // Total; r = q - Log[1 + x]; v = q + r; ev = (v*q - r)/(1 - v); eq = (ev + v)/(1 + v) - q; CoefficientList[ Series[eq, {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 01 2013 *)
CROSSREFS
Sequence in context: A366715 A132490 A344745 * A362385 A327230 A288555
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Dec 20 2000
STATUS
approved