login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308862
Expansion of e.g.f. 1/(1 - x*(1 + 3*x + x^2)*exp(x)).
6
1, 1, 10, 81, 976, 14505, 258456, 5377897, 127852096, 3419620209, 101625743080, 3322169384721, 118475520287136, 4577175039397753, 190436902905933880, 8489222610046324665, 403657900923994965376, 20393319895130130117729, 1090902632352025316904648
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1 / (1 - Sum_{k>=1} k^3*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^3 * a(n-k).
a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 7*r + 6*r^2 + r^3)), where r = 0.33649177041401456061485914122406146158245451810028937972189... is the root of the equation exp(r)*r*(1 + 3*r + r^2) = 1. - Vaclav Kotesovec, Jun 29 2019
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(1 - x (1 + 3 x + x^2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + 3*x + x^2)*exp(x)))) \\ Michel Marcus, Mar 10 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 29 2019
STATUS
approved