login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279358
Exponential transform of the cubes A000578.
7
1, 1, 9, 52, 413, 3916, 41077, 481384, 6198425, 86430160, 1296040841, 20763245944, 353272341061, 6353672109760, 120315348389069, 2390488408994536, 49682962883210033, 1077292416660660736, 24313317132393295633, 569937590287796925784, 13850459183086300341341
OFFSET
0,3
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Exponential Transform
Eric Weisstein's World of Mathematics, Cubic Number
FORMULA
E.g.f.: exp(exp(x)*(x+3*x^2+x^3)).
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 9*x^2/2! + 52*x^3/3! + 413*x^4/4! + 3916*x^5/5! + 41077*x^6/6! + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^3*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 11 2016
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[Exp[x] (x + 3 x^2 + x^3)], {x, 0, 20}], x]
CROSSREFS
Column k=3 of A279636.
Sequence in context: A282179 A278000 A159598 * A344820 A156544 A094793
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 10 2016
STATUS
approved