login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094793 a(n) = (1/n!)*A001688(n). 3
9, 53, 181, 465, 1001, 1909, 3333, 5441, 8425, 12501, 17909, 24913, 33801, 44885, 58501, 75009, 94793, 118261, 145845, 178001, 215209, 257973, 306821, 362305, 425001, 495509, 574453, 662481, 760265, 868501, 987909, 1119233, 1263241 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Number of injections from {1,2,3,4} to {1,2,...,n} with no fixed points. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006

In general (cf. A094792, A094794, A094795, etc.), the number of injections [k] -> [n] with no fixed points is given by sum((-1)^i*binomial(k,i)*(n-i)!/(n-k)!,i=0..k), which is equal to (1/n!)*f_k(n) where f_k(n) gives the k-th differences of factorial numbers. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006

LINKS

Table of n, a(n) for n=0..32.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = n^4 + 6*n^3 + 17*n^2 + 20*n + 9.

a(n) = sum((-1)^i*binomial(4,i)*(n-i)!/(n-4)!,i=0..4). - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006

G.f.: -(x^4+6*x^2+8*x+9) / (x-1)^5. - Colin Barker, Jun 16 2013

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Fung Lam, Apr 17 2014

MATHEMATICA

LinearRecurrence[{5, -10, 10, -5, 1}, {9, 53, 181, 465, 1001}, 40] (* Harvey P. Dale, May 23 2016 *)

CROSSREFS

Cf. A001563, A001564, A001565, A001688, A001689, A023043.

Sequence in context: A159598 A279358 A156544 * A197499 A036425 A126085

Adjacent sequences:  A094790 A094791 A094792 * A094794 A094795 A094796

KEYWORD

nonn,easy

AUTHOR

Benoit Cloitre, Jun 11 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 13:12 EST 2019. Contains 329230 sequences. (Running on oeis4.)