login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023043 6th differences of factorial numbers. 10
265, 2119, 18806, 183822, 1965624, 22852200, 287250480, 3884393520, 56255149440, 869007242880, 14266826784000, 248112809683200, 4557208289356800, 88166812070937600, 1792259345728051200, 38195370237024000000, 851609625265631232000, 19827505082582765568000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
From Vaclav Kotesovec, Oct 21 2012: (Start)
E.g.f.: (265 + 264*x + 135*x^2 + 40*x^3 + 15*x^4 + x^6)/(1-x)^7.
D-finite Recurrence: a(n) = (n+7)*a(n-1) - (n-1)*a(n-2), n>=1.
a(n) ~ n!*n^6.
(End)
MATHEMATICA
CoefficientList[Series[-(265 + 264x + 135x^2 + 40x^3 + 15x^4 + x^6)/(x - 1)^7, {x, 0, 20}], x] Range[0, 20]! (* Vaclav Kotesovec, Oct 21 2012 *)
Differences[Range[0, 23]!, 6] (* Alonso del Arte, Nov 10 2018 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace( -(265 +264*x +135*x^2 +40*x^3 +15*x^4 +x^6) / (x-1)^7 )) \\ Joerg Arndt, May 04 2013
(GAP) a:=[265, 2119];; for n in [3..20] do a[n]:=(n+6)*a[n-1]-(n-2)*a[n-2]; od; a; # Muniru A Asiru, Nov 23 2018
(Magma) I:=[2119, 18806]; [265] cat [n le 2 select I[n] else (n+7)*Self(n-1) - (n-1)*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 23 2018
(Sage)
f= (265 + 264*x + 135*x^2 + 40*x^3 + 15*x^4 + x^6)/(1-x)^7
g=f.taylor(x, 0, 30)
L=g.coefficients()
coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
coeffs # G. C. Greubel, Nov 23 2018
CROSSREFS
Sequence in context: A202464 A183247 A094795 * A211719 A210120 A266308
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 00:26 EDT 2023. Contains 363157 sequences. (Running on oeis4.)