login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094791
Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.
5
1, 1, 0, 1, 1, 1, 1, 3, 5, 2, 1, 6, 17, 20, 9, 1, 10, 45, 100, 109, 44, 1, 15, 100, 355, 694, 689, 265, 1, 21, 196, 1015, 3094, 5453, 5053, 1854, 1, 28, 350, 2492, 10899, 29596, 48082, 42048, 14833, 1, 36, 582, 5460, 32403, 124908, 309602, 470328, 391641, 133496
OFFSET
0,8
COMMENTS
Let D_0(n)=n! and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n), then D_{k}(n)=n!*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k.
The horizontal reversal of this triangle arises as a binomial convolution of the derangements coefficients der(n,i) (numbers of permutations of size n with i derangements = A098825(n,i) = number of permutations of size n with n-i rencontres = A008290(n,n-i), see formula section). - Olivier Gérard, Jul 31 2011
FORMULA
T(n, n) = A000166(n).
T(2, k) = A000217(k).
Sum_{k=0..n} T(n,n-k)*x^k = Sum_{i=0..n} der(n,i)*binomial( n+x, i) (an analog of Worpitzky's identity). - Olivier Gérard, Jul 31 2011
The n-th row polynomial R(n,x) = Sum _{k = 0..n} T(n,k)*x^k is P-recursive in the variable x: x*R(n,x) = (x+n+1)*R(n,x-1) - R(n,x-2). - Peter Bala, Jul 25 2021
EXAMPLE
D_3(n) = n!*(n^3 + 3*n^2 + 5*n + 2).
D_4(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9).
Table begins:
1
1 0
1 1 1
1 3 5 2
1 6 17 20 9
1 10 45 100 109 44
1 15 100 355 694 689 265
...
MAPLE
with(LREtools): A094791_row := proc(n)
delta(x!, x, n); simplify(%/x!); seq(coeff(%, x, n-j), j=0..n) end:
seq(print(A094791_row(n)), n=0..9); # Peter Luschny, Jan 09 2015
MATHEMATICA
d[0][n_] := n!; d[k_][n_] := d[k][n] = d[k - 1][n + 1] - d[k - 1][n] // FullSimplify;
row[k_] := d[k][n]/n! // FullSimplify // CoefficientList[#, n]& // Reverse;
Array[row, 10, 0] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
CROSSREFS
Successive differences of factorial numbers: A001563, A001564, A001565, A001688, A001689, A023043.
Rencontres numbers A008290. Partial derangements A098825.
Row sum is A000255. Signed version in A126353.
Sequence in context: A308180 A329633 A126353 * A243524 A349988 A272300
KEYWORD
nonn,tabl
AUTHOR
Benoit Cloitre, Jun 11 2004
EXTENSIONS
Edited and T(0,0) corrected according to the author's definition by Olivier Gérard, Jul 31 2011
STATUS
approved