login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272300
Decimal expansion of lim_{N->infinity} (1/N^2 Sum_{n=1..N} K(n)), where K(n) is the squarefree kernel of n.
0
3, 5, 2, 2, 2, 1, 1, 0, 0, 4, 9, 9, 5, 8, 2, 7, 9, 6, 3, 6, 8, 3, 0, 1, 6, 7, 5, 1, 6, 3, 3, 1, 8, 6, 0, 5, 0, 9, 4, 2, 9, 3, 2, 1, 5, 7, 0, 8, 5, 4, 9, 0, 2, 4, 7, 0, 7, 1, 1, 3, 4, 2, 1, 2, 9, 5, 5, 4, 8, 5, 2, 8, 3, 4, 1, 0, 0, 3, 3, 8, 9, 2, 6, 8, 4, 0, 4, 1, 2, 2, 0, 7, 2, 8, 4, 6, 5, 6, 6, 8, 8
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.5.1 Carefree couples, p. 111.
FORMULA
Equals (Pi^2/12)*A065464.
Equals (1/2) * A065463. - Amiram Eldar, Nov 16 2021
EXAMPLE
0.35222110049958279636830167516331860509429321570854902470711342...
MATHEMATICA
$MaxExtraPrecision = 800; digits = 101; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; (1/2)*Exp[NSum[r[n]*(PrimeZetaP[n - 1]/(n - 1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First
PROG
(PARI) prodeulerrat(1 - 1/(p*(p+1)))/2 \\ Amiram Eldar, Nov 16 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved