login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059246
Numerator of Sum_{j=1..n} d(j)/n, where d = number of divisors function (A000005).
3
1, 3, 5, 2, 2, 7, 16, 5, 23, 27, 29, 35, 37, 41, 3, 25, 52, 29, 60, 33, 10, 37, 76, 7, 87, 7, 95, 101, 103, 37, 113, 119, 41, 127, 131, 35, 142, 73, 50, 79, 160, 4, 170, 4, 182, 93, 4, 33, 201, 207, 211, 217, 219, 227, 21, 239, 81, 247, 249, 87, 263
OFFSET
1,2
REFERENCES
M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
LINKS
FORMULA
a(n) = numerator(A006218(n)/n). - Michel Marcus, Jan 03 2017
EXAMPLE
1, 3/2, 5/3, 2, 2, 7/3, 16/7, 5/2, 23/9, 27/10, ...
MATHEMATICA
Numerator[Table[Sum[DivisorSigma[0, j]/n, {j, 1, n}], {n, 1, 100}]] (* G. C. Greubel, Jan 02 2017 *)
PROG
(PARI) a(n) = numerator(sum(j=1, n, numdiv(j))/n); \\ Michel Marcus, Jan 03 2017
(Python)
from math import gcd, isqrt
def A059246(n): return (m:=-(s:=isqrt(n))**2+(sum(n//k for k in range(1, s+1))<<1))//gcd(n, m) # Chai Wah Wu, Oct 23 2023
CROSSREFS
Sequence in context: A349988 A272300 A115406 * A091276 A282574 A076562
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 21 2001
STATUS
approved