login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059247
Denominator of Sum_{j=1..n} d(j)/n, where d = number of divisors function (A000005).
3
1, 2, 3, 1, 1, 3, 7, 2, 9, 10, 11, 12, 13, 14, 1, 8, 17, 9, 19, 10, 3, 11, 23, 2, 25, 2, 27, 28, 29, 10, 31, 32, 11, 34, 35, 9, 37, 19, 13, 20, 41, 1, 43, 1, 45, 23, 1, 8, 49, 50, 51, 52, 53, 54, 5, 56, 19, 58, 59, 20, 61, 62, 3, 8, 65, 33, 67, 17, 69, 35, 71
OFFSET
1,2
REFERENCES
M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
LINKS
FORMULA
a(n) = denominator(A006218(n)/n). - Michel Marcus, Jan 03 2017
EXAMPLE
1, 3/2, 5/3, 2, 2, 7/3, 16/7, 5/2, 23/9, 27/10, ...
MATHEMATICA
Denominator[Table[Sum[DivisorSigma[0, j]/n, {j, 1, n}], {n, 1, 100}]] (* G. C. Greubel, Jan 02 2016 *)
PROG
(PARI) a(n) = denominator(sum(j=1, n, numdiv(j))/n); \\ Michel Marcus, Jan 03 2017
(Python)
from math import isqrt, gcd
def A059247(n): return n//gcd(n, (lambda m: 2*sum(n//k for k in range(1, m+1))-m*m)(isqrt(n))) # Chai Wah Wu, Oct 08 2021
CROSSREFS
Sequence in context: A135392 A071947 A139343 * A340940 A362464 A244665
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 21 2001
STATUS
approved