login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of lim_{N->infinity} (1/N^2 Sum_{n=1..N} K(n)), where K(n) is the squarefree kernel of n.
0

%I #9 Nov 16 2021 07:20:50

%S 3,5,2,2,2,1,1,0,0,4,9,9,5,8,2,7,9,6,3,6,8,3,0,1,6,7,5,1,6,3,3,1,8,6,

%T 0,5,0,9,4,2,9,3,2,1,5,7,0,8,5,4,9,0,2,4,7,0,7,1,1,3,4,2,1,2,9,5,5,4,

%U 8,5,2,8,3,4,1,0,0,3,3,8,9,2,6,8,4,0,4,1,2,2,0,7,2,8,4,6,5,6,6,8,8

%N Decimal expansion of lim_{N->infinity} (1/N^2 Sum_{n=1..N} K(n)), where K(n) is the squarefree kernel of n.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.5.1 Carefree couples, p. 111.

%F Equals (Pi^2/12)*A065464.

%F Equals (1/2) * A065463. - _Amiram Eldar_, Nov 16 2021

%e 0.35222110049958279636830167516331860509429321570854902470711342...

%t $MaxExtraPrecision = 800; digits = 101; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; (1/2)*Exp[NSum[r[n]*(PrimeZetaP[n - 1]/(n - 1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First

%o (PARI) prodeulerrat(1 - 1/(p*(p+1)))/2 \\ _Amiram Eldar_, Nov 16 2021

%Y Cf. A007947, A065463, A065464.

%K nonn,cons

%O 0,1

%A _Jean-François Alcover_, Apr 25 2016