login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.
5

%I #33 Aug 14 2021 15:33:34

%S 1,1,0,1,1,1,1,3,5,2,1,6,17,20,9,1,10,45,100,109,44,1,15,100,355,694,

%T 689,265,1,21,196,1015,3094,5453,5053,1854,1,28,350,2492,10899,29596,

%U 48082,42048,14833,1,36,582,5460,32403,124908,309602,470328,391641,133496

%N Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.

%C Let D_0(n)=n! and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n), then D_{k}(n)=n!*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k.

%C The horizontal reversal of this triangle arises as a binomial convolution of the derangements coefficients der(n,i) (numbers of permutations of size n with i derangements = A098825(n,i) = number of permutations of size n with n-i rencontres = A008290(n,n-i), see formula section). - _Olivier Gérard_, Jul 31 2011

%F T(n, n) = A000166(n).

%F T(2, k) = A000217(k).

%F Sum_{k=0..n} T(n,n-k)*x^k = Sum_{i=0..n} der(n,i)*binomial( n+x, i) (an analog of Worpitzky's identity). - _Olivier Gérard_, Jul 31 2011

%F The n-th row polynomial R(n,x) = Sum _{k = 0..n} T(n,k)*x^k is P-recursive in the variable x: x*R(n,x) = (x+n+1)*R(n,x-1) - R(n,x-2). - _Peter Bala_, Jul 25 2021

%e D_3(n) = n!*(n^3 + 3*n^2 + 5*n + 2).

%e D_4(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9).

%e Table begins:

%e 1

%e 1 0

%e 1 1 1

%e 1 3 5 2

%e 1 6 17 20 9

%e 1 10 45 100 109 44

%e 1 15 100 355 694 689 265

%e ...

%p with(LREtools): A094791_row := proc(n)

%p delta(x!,x,n); simplify(%/x!); seq(coeff(%,x,n-j),j=0..n) end:

%p seq(print(A094791_row(n)),n=0..9); # _Peter Luschny_, Jan 09 2015

%t d[0][n_] := n!; d[k_][n_] := d[k][n] = d[k - 1][n + 1] - d[k - 1][n] // FullSimplify;

%t row[k_] := d[k][n]/n! // FullSimplify // CoefficientList[#, n]& // Reverse;

%t Array[row, 10, 0] // Flatten (* _Jean-François Alcover_, Aug 02 2019 *)

%Y Successive differences of factorial numbers: A001563, A001564, A001565, A001688, A001689, A023043.

%Y Rencontres numbers A008290. Partial derangements A098825.

%Y Row sum is A000255. Signed version in A126353.

%Y Cf. A094792, A094793, A094794, A094795.

%K nonn,tabl

%O 0,8

%A _Benoit Cloitre_, Jun 11 2004

%E Edited and T(0,0) corrected according to the author's definition by _Olivier Gérard_, Jul 31 2011