OFFSET
2,2
COMMENTS
Diagonal of the square array A217593. - Philippe Deléham, Mar 28 2013
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..1791
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
FORMULA
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(3*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
G.f.: -x^2*(-1+2*x) / ( (x^2-3*x+1)*(5*x^2-5*x+1) ).
a(n+2) = A217593(n,n+5). - Philippe Deléham, Mar 28 2013
MATHEMATICA
Drop[CoefficientList[Series[-x^2*(-1 + 2 x)/((x^2 - 3 x + 1) (5 x^2 - 5 x + 1)), {x, 0, 25}], x], 2] (* Michael De Vlieger, Aug 04 2021 *)
LinearRecurrence[{8, -21, 20, -5}, {1, 6, 27, 110}, 30] (* Harvey P. Dale, Aug 31 2021 *)
PROG
(PARI) Vec(x^2*(1-2*x)/(1-8*x+21*x^2-20*x^3+5*x^4)+O(x^66)) /* Joerg Arndt, Mar 29 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 15 2004
STATUS
approved