login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094788
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 6.
4
1, 6, 27, 110, 428, 1624, 6069, 22458, 82555, 302082, 1101816, 4009616, 14567657, 52865230, 191684283, 694609494, 2515972324, 9110338728, 32981059485, 119377761602, 432046756571, 1563510554986, 5657752486512, 20472344560800
OFFSET
2,2
COMMENTS
Diagonal of the square array A217593. - Philippe Deléham, Mar 28 2013
LINKS
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
FORMULA
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(3*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
G.f.: -x^2*(-1+2*x) / ( (x^2-3*x+1)*(5*x^2-5*x+1) ).
a(n+2) = A217593(n,n+5). - Philippe Deléham, Mar 28 2013
2*a(n) = A030191(n-1) - A001906(n). - R. J. Mathar, Nov 15 2019
MATHEMATICA
Drop[CoefficientList[Series[-x^2*(-1 + 2 x)/((x^2 - 3 x + 1) (5 x^2 - 5 x + 1)), {x, 0, 25}], x], 2] (* Michael De Vlieger, Aug 04 2021 *)
LinearRecurrence[{8, -21, 20, -5}, {1, 6, 27, 110}, 30] (* Harvey P. Dale, Aug 31 2021 *)
PROG
(PARI) Vec(x^2*(1-2*x)/(1-8*x+21*x^2-20*x^3+5*x^4)+O(x^66)) /* Joerg Arndt, Mar 29 2013 */
CROSSREFS
Sequence in context: A055145 A037604 A022634 * A221863 A216263 A003517
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 15 2004
STATUS
approved