login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216263
Expansion of 1 / ((1-2*x)*(1-4*x+x^2)).
3
1, 6, 27, 110, 429, 1638, 6187, 23238, 87021, 325358, 1215435, 4538430, 16942381, 63239286, 236031147, 880918070, 3287706669, 12270039678, 45792714187, 170901341358, 637813699821, 2380355555078, 8883612714795, 33154103692710, 123732818833261, 461777205194766, 1723376069054667
OFFSET
0,2
LINKS
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
FORMULA
G.f.: 1/((1-2*x)*(1-4*x+x^2)).
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3), a(0) = 1, a(1) = 6, a(2) = 27.
3*a(n) = -2^(n+2) + A001075(n+2). - R. J. Mathar, Mar 29 2013
a(n) = (-2^(3+n) + (7-4*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(7+4*sqrt(3))) / 6. - Colin Barker, Feb 05 2017
MATHEMATICA
CoefficientList[Series[1/((1 - 2 x)*(1 - 4 x + x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Aug 05 2021 *)
PROG
(PARI) Vec(1/((1-2*x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, Feb 05 2017
CROSSREFS
A diagonal of A214846.
Cf. A001075.
Sequence in context: A022634 A094788 A221863 * A003517 A108958 A005284
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 15 2013
STATUS
approved