login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216262
Primes p such that, for p < q < r three consecutive primes, p + 2q + 2r, 2p + q + 2r and 2p + 2q + r are all primes.
1
10193, 12113, 17683, 19501, 63743, 70793, 74317, 74797, 79657, 89231, 109073, 112657, 114371, 116993, 119237, 120431, 130211, 139801, 148573, 152123, 164881, 173867, 201623, 230017, 264919, 275543, 284927, 290761, 323537, 325643, 371873, 382777, 385193, 396061, 399403, 402817, 415201, 421273
OFFSET
1,1
COMMENTS
From first 10^5 primes, only 92 are terms. Indices of primes are 1252, 1451, 2032,..., 95460, 97950, 98973.
Note that p == q == r (mod 6), e.g., {10193, 10211, 10223} == 5 mod 6 and {17683, 17707, 17713} == 1 mod 6.
LINKS
EXAMPLE
a(1) = p = 10193; s = {p, q, r} = {10193, 10211, 10223};
{{1,2,2}.s, {2,1,2}.s, {2,2,1}.s} = {51061, 51043, 51031} all primes.
MATHEMATICA
pr=Partition[Prime[Range[40000]], 3, 1]; Reap[Do[s=pr[[k]]; If[Union[PrimeQ[{{1, 2, 2}.s, {2, 1, 2}.s, {2, 2, 1}.s}]]=={True}, Sow[Prime[k]]], {k, Length[pr]}]][[2, 1]]
tcpQ[{p_, q_, r_}]:=AllTrue[{p+2q+2r, 2p+q+2r, 2p+2q+r}, PrimeQ]; Select[ Partition[ Prime[Range[36000]], 3, 1], tcpQ][[All, 1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2017 *)
CROSSREFS
Sequence in context: A128878 A050267 A102326 * A243410 A221119 A105582
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 15 2013
STATUS
approved