|
|
A050267
|
|
Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.
|
|
37
|
|
|
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Terms are listed in the order of their appearance in sequence b.
This is a transformed version of the polynomial P(x) = 47*x^2 + 9*x - 5209 whose absolute value gives 43 distinct primes for -24 <= x <= 18, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019
|
|
REFERENCES
|
R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
G. W. Fung and H. C. Williams, Quadratic polynomials which have a high density of prime values, Math. Comput. 55(191) (1990), 345-353.
Carlos Rivera, Problem 12: Prime producing polynomials, The Prime Puzzles & Problems Connection.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
|
|
MATHEMATICA
|
lst={}; Do[p=47*n^2-1701*n+10181; If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 29 2009 *)
Select[Table[47n^2-1701n+10181, {n, 0, 50}], PrimeQ] (* Harvey P. Dale, Oct 03 2011 *)
|
|
PROG
|
(PARI) [n | n <- apply(m->47*m^2-1701*m+10181, [0..100]), isprime(abs(n))] \\ Charles R Greathouse IV, Jun 18 2017
|
|
CROSSREFS
|
Cf. A002383, A005471, A005846, A007635, A022464, A027753, A027755, A027758, A048059, A050267, A050268, A116206, A117081, A267252.
Sequence in context: A251274 A184205 A128878 * A102326 A216262 A243410
Adjacent sequences: A050264 A050265 A050266 * A050268 A050269 A050270
|
|
KEYWORD
|
sign,less
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, May 10 2007
Further edited by Klaus Brockhaus, Mar 20 2010
More terms (to distinguish from quadratic) from Charles R Greathouse IV, Jun 18 2017
|
|
STATUS
|
approved
|
|
|
|