OFFSET
0,1
COMMENTS
The absolute values of a(n) for 0 <= n <= 44 are primes, a(45) = 39203 = 197*199. The positive prime terms are in A050268.
The polynomial is a transformed version of the polynomial P(x) = 36*x^2 + 18*x - 1801 whose absolute value gives 45 distinct primes for -33 <= x <= 11, found by Ruby in 1989. It is one of the 3 known quadratic polynomials whose absolute value produces more than 40 primes in a contiguous range from 0 to n. For the other two polynomials, which produce 43 primes, see A050267 and A267252. - Hugo Pfoertner, Dec 13 2019
REFERENCES
Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
François Dress and Michel Olivier, Polynômes prenant des valeurs premières, Experimental Mathematics, Volume 8, Issue 4 (1999), 319-338.
Carlos Rivera, Problem 12: Prime producing polynomials, The Prime Puzzles and Problems Connection.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (2753-6280*x+3599*x^2)/(1-x)^3. [Colin Barker, May 10 2012]
a(0)=2753, a(1)=1979, a(2)=1277, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jun 20 2013
MATHEMATICA
f[n_] := If[Mod[n, 2] == 1, 36*n^2 - 810*n + 2753, 36*n^2 - 810*n + 2753] a = Table[f[n], {n, 0, 100}]
CoefficientList[Series[(2753-6280*x+3599*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, May 12 2012 *)
Table[36n^2-810n+2753, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {2753, 1979, 1277}, 50] (* Harvey P. Dale, Jun 20 2013 *)
PROG
(PARI) {for(n=0, 46, print1(36*n^2-810*n+2753, ", "))}
(Magma) I:=[2753, 1979, 1277]; [n le 3 select I[n] else 3*Self(n-1)-3 *Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, May 12 2012
CROSSREFS
KEYWORD
sign,easy,less
AUTHOR
Roger L. Bagula, Apr 17 2006
EXTENSIONS
Edited by N. J. A. Sloane, Apr 27 2007
Title extended by Hugo Pfoertner, Dec 13 2019
STATUS
approved