OFFSET
1,1
COMMENTS
The sequence of primes of this form, in order of increasing size, would read: 89, 359, 647, 953, 1277, 1619, 1979, 2357, 2753, ... - M. F. Hasler, Jan 18 2015
The polynomial is a transformed version of the polynomial P(x) = 36*x^2 + 18*x - 1801 whose absolute value gives 45 distinct primes for -33 <= x <= 11, found by Ruby in 1989. In the present sequence only positive values of the polynomial are taken into account. A117081 provides also the negative function values. - Hugo Pfoertner, Dec 13 2019
REFERENCES
Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Jitender Singh, Prime numbers and factorization of polynomials, arXiv:2411.18366 [math.NT], 2024.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
MAPLE
t1:=[seq(36*n^2 - 810*n + 2753, n=0..100)]; t2:=[]; for i from 1 to nops(t1) do if isprime(t1[i]) then t2:=[op(t2), t1[i]]; fi; od: t2; # N. J. A. Sloane
MATHEMATICA
Select[Table[36n^2-810n+2753, {n, 0, 2000}], PrimeQ] (* Vincenzo Librandi, Dec 08 2011 *)
PROG
(PARI) select(isprime, vector(1000, n, 36*n^2-810*n+2753)) \\ Charles R Greathouse IV, Feb 14 2011
(Magma) [a: n in [0..100] | IsPrime(a) where a is 36*n^2 - 810*n + 2753]; // Vincenzo Librandi, Dec 08 2011
CROSSREFS
KEYWORD
nonn,easy,less,changed
AUTHOR
EXTENSIONS
Definition corrected by M. F. Hasler, Jan 18 2015
STATUS
approved