OFFSET
1,1
COMMENTS
This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019
REFERENCES
Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
LINKS
Robert Price, Table of n, a(n) for n = 1..3885
François Dress and Michel Olivier, Polynômes prenant des valeurs premières, Experimental Mathematics, Volume 8, Issue 4 (1999), 319-338.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
EXAMPLE
33203 is in this sequence since 103*4^2 - 4707*4 + 50383 = 1648-18828+50383 = 33203 is prime.
MATHEMATICA
n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
PROG
(PARI) lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ Altug Alkan, Apr 28 2016, corrected by Hugo Pfoertner, Dec 13 2019
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Robert Price, Apr 28 2016
EXTENSIONS
Title corrected by Hugo Pfoertner, Dec 13 2019
STATUS
approved