login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330363 58 consecutive function values of the prime generating polynomial P(x) = (1/72)*x^6 + (1/24)*x^5 - (1583/72)*x^4 - (3161/24)*x^3 + (200807/36)*x^2 + (97973/3)*x - 11351. Abs(P(n)) is prime for -45 <= n < 12. 4
39300979, 32074681, 25874993, 20591567, 16122559, 12374209, 9260431, 6702413, 4628227, 2972449, 1675789, 684731, -48817, -567863, -910661, -1111031, -1198669, -1199447, -1135703, -1026521, -888001, -733519, -573977, -418043, -272381, -141871, -29819 (list; graph; refs; listen; history; text; internal format)
OFFSET

-45,1

COMMENTS

As of 2014, this is the polynomial with rational coefficients that produces the most primes for a contiguous region of n. It was found by François Dress and Bernard Landreau, see the publication linked below. The complete list of 58 values is provided as b-file.

LINKS

Hugo Pfoertner, Table of n, a(n) for n = -45..12

François Dress and Bernard Landreau, Polynômes de degré supérieur à 2 prenant beaucoup de valeurs premières, arXiv:1402.7312 [math.NT], 28 Feb 2014.

PROG

(PARI) for(x=-45, 12, my(P=(((((x/72+1/24)*x-1583/72)*x-3161/24)*x+200807/36)*x+97973/3)*x-11351); if(isprime(abs(P)), print1(P, ", "), break))

CROSSREFS

Cf. A121887, A330364 (absolute values sorted by size).

Sequence in context: A272599 A105004 A216006 * A233754 A203895 A072237

Adjacent sequences:  A330360 A330361 A330362 * A330364 A330365 A330366

KEYWORD

sign,fini,full,less

AUTHOR

Hugo Pfoertner, Dec 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 19:18 EDT 2021. Contains 342853 sequences. (Running on oeis4.)