|
|
A272118
|
|
Numbers k such that abs(6*k^2 - 342*k + 4903) is prime.
|
|
7
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 66, 67, 68, 69, 71, 72
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Robert Price, Table of n, a(n) for n = 1..3874
Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
|
|
EXAMPLE
|
4 is in this sequence since 6*4^2 - 342*4 + 4903 = 96-1368+4903 = 3631 is prime.
|
|
MATHEMATICA
|
Select[Range[0, 100], PrimeQ[6*#^2 - 342*# + 4903] &]
|
|
PROG
|
(PARI) isok(n) = isprime(abs(6*n^2 - 342*n + 4903)); \\ Michel Marcus, Apr 21 2016
|
|
CROSSREFS
|
Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
Cf. A271980, A272074, A272075.
Sequence in context: A296765 A055643 A122079 * A247163 A120951 A272554
Adjacent sequences: A272115 A272116 A272117 * A272119 A272120 A272121
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert Price, Apr 20 2016
|
|
STATUS
|
approved
|
|
|
|