|
|
A005846
|
|
Primes of the form n^2 + n + 41.
(Formerly M5273)
|
|
118
|
|
|
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601, 1847, 1933, 2111, 2203, 2297, 2393, 2591, 2693, 2797
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The link to E. Wegrzynowski contains the following incorrect statement: "It is possible to find a polynomial of the form n^2 + n + B that gives prime numbers for n = 0, ..., A, A being any number." It is known that the maximum is A = 39 for B = 41. - Luis Rodriguez (luiroto(AT)yahoo.com), Jun 22 2008
Contrary to the last comment, Mollin's Theorem 2.1 shows that any A is possible if the Prime k-tuples Conjecture is assumed. - T. D. Noe, Aug 31 2009
a(n) can be generated by a recurrence based on the gcd in the type of Eric Rowland and Aldrich Stevens. See the recurrence in PARI under PROG. - Mike Winkler, Oct 02 2013
These primes are not prime in O_(Q(sqrt(-163)). Given p = n^2 + n + 41, we have ((2n + 1)/2 - sqrt(-163)/2)((2n + 1)/2 + sqrt(-163)/2) = p, e.g., 1601 = 39^2 + 39 + 41 = (79/2 - sqrt(-163)/2)(79/2 + sqrt(-163)/2). - Alonso del Arte, Nov 03 2017
The polynomial P(n) := n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. It follows that the polynomial P(n-40) takes prime values for the 80 consecutive integers n = 0 to 79, consisting of the 40 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n-40) = 4*n^2 - 158*n + 1601 also takes prime values for the 40 consecutive integers n = 0 to 39.
2) The polynomial P(3*n-40) = 9*n^2 - 237*n + 1601 takes prime values for the 27 consecutive integers n = 0 to 26 ( = floor(79/3)). In addition, calculation shows that P(3*n-40) also takes prime values for n from -13 to -1. Equivalently put, the polynomial P(3*n-79) = 9*n^2 - 471*n + 6203 takes prime values for the 40 consecutive integers n = 0 to 39. This result is due to Higgins. Cf. A007635 and A048059. (End)
|
|
REFERENCES
|
O. Higgins, Another long string of primes, J. Rec. Math., 14 (1981/2) 185.
Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 137.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(39) = 1601 = 39^2 + 39 + 41 is in the sequence because it is prime.
1681 = 40^2 + 40 + 41 is not in the sequence because 1681 = 41*41.
|
|
MAPLE
|
for y from 0 to 10 do
U := y^2+y+41;
if isprime(U) = true then print(U) end if ;
end do:
|
|
MATHEMATICA
|
Select[Table[n^2 + n + 41, {n, 0, 59}], PrimeQ] (* Alonso del Arte, Dec 08 2011 *)
|
|
PROG
|
(Haskell)
a005846 n = a005846_list !! (n-1)
a005846_list = filter ((== 1) . a010051) a202018_list
(PARI) {k=2; n=1; for(x=1, 100000, f=x^2+x+41; g=x^2+3*x+43; a=gcd(f, g-k); if(a>1, k=k+2); if(a==x+2-k/2, print(n" "a); n++))} \\ Mike Winkler, Oct 02 2013
(GAP) Filtered(List([0..100], n->n^2+n+41), IsPrime); # Muniru A Asiru, Apr 22 2018
(Magma) [a: n in [0..55] | IsPrime(a) where a is n^2+n+ 41]; // Vincenzo Librandi, Apr 24 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|