login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form n^2 + n + 41.
(Formerly M5273)
120

%I M5273 #123 Dec 04 2024 10:34:04

%S 41,43,47,53,61,71,83,97,113,131,151,173,197,223,251,281,313,347,383,

%T 421,461,503,547,593,641,691,743,797,853,911,971,1033,1097,1163,1231,

%U 1301,1373,1447,1523,1601,1847,1933,2111,2203,2297,2393,2591,2693,2797

%N Primes of the form n^2 + n + 41.

%C Note that 41 is the largest of Euler's Lucky numbers (A014556). - _Lekraj Beedassy_, Apr 22 2004

%C a(n) = A117530(13, n) for n <= 13: a(1) = A117530(13, 1) = A014556(6) = 41, A117531(13) = 13. - _Reinhard Zumkeller_, Mar 26 2006

%C The link to E. Wegrzynowski contains the following incorrect statement: "It is possible to find a polynomial of the form n^2 + n + B that gives prime numbers for n = 0, ..., A, A being any number." It is known that the maximum is A = 39 for B = 41. - Luis Rodriguez (luiroto(AT)yahoo.com), Jun 22 2008

%C Contrary to the last comment, Mollin's Theorem 2.1 shows that any A is possible if the Prime k-tuples Conjecture is assumed. - _T. D. Noe_, Aug 31 2009

%C a(n) can be generated by a recurrence based on the gcd in the type of _Eric Rowland_ and Aldrich Stevens. See the recurrence in PARI under PROG. - _Mike Winkler_, Oct 02 2013

%C These primes are not prime in O_(Q(sqrt(-163)). Given p = n^2 + n + 41, we have ((2n + 1)/2 - sqrt(-163)/2)((2n + 1)/2 + sqrt(-163)/2) = p, e.g., 1601 = 39^2 + 39 + 41 = (79/2 - sqrt(-163)/2)(79/2 + sqrt(-163)/2). - _Alonso del Arte_, Nov 03 2017

%C From _Peter Bala_, Apr 15 2018: (Start)

%C The polynomial P(n) := n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. It follows that the polynomial P(n-40) takes prime values for the 80 consecutive integers n = 0 to 79, consisting of the 40 primes above each taken twice. We note two consequences of this fact.

%C 1) The polynomial P(2*n-40) = 4*n^2 - 158*n + 1601 also takes prime values for the 40 consecutive integers n = 0 to 39.

%C 2) The polynomial P(3*n-40) = 9*n^2 - 237*n + 1601 takes prime values for the 27 consecutive integers n = 0 to 26 ( = floor(79/3)). In addition, calculation shows that P(3*n-40) also takes prime values for n from -13 to -1. Equivalently put, the polynomial P(3*n-79) = 9*n^2 - 471*n + 6203 takes prime values for the 40 consecutive integers n = 0 to 39. This result is due to Higgins. Cf. A007635 and A048059. (End)

%D R. K. Guy, Unsolved Problems Number Theory, Section A1.

%D O. Higgins, Another long string of primes, J. Rec. Math., 14 (1981/2) 185.

%D Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 137.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Zak Seidov, <a href="/A005846/b005846.txt">Table of n, a(n) for n = 1..10000.</a>

%H Phil Carmody, <a href="http://fatphil.org/maths/DragRace/">Drag Racing Prime Numbers!</a> - _Vladimir Joseph Stephan Orlovsky_, Jul 24 2011

%H Richard K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]

%H R. A. Mollin, <a href="http://www.jstor.org/stable/2975080">Prime-producing quadratics</a>, Amer. Math. Monthly 104 (1997), 529-544.

%H Jitender Singh, <a href="https://arxiv.org/abs/2411.18366">Prime numbers and factorization of polynomials</a>, arXiv:2411.18366 [math.NT], 2024.

%H E. Wegrzynowski, <a href="http://web.archive.org/web/20160413222527/http://www.lifl.fr/~wegrzyno/FormulPrem/FormulesPremiers23.html">Les formules simples qui donnent des nombres premiers en grande quantité</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPrime.html">Euler Prime</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>

%F a(n) = A056561(n)^2 + A056561(n) + 41.

%e a(39) = 1601 = 39^2 + 39 + 41 is in the sequence because it is prime.

%e 1681 = 40^2 + 40 + 41 is not in the sequence because 1681 = 41*41.

%p for y from 0 to 10 do

%p U := y^2+y+41;

%p if isprime(U) = true then print(U) end if ;

%p end do:

%p # _Matt C. Anderson_, Jan 04 2013

%t Select[Table[n^2 + n + 41, {n, 0, 59}],PrimeQ] (* _Alonso del Arte_, Dec 08 2011 *)

%o (PARI) for(n=1,1e3,if(isprime(k=n^2+n+41),print1(k", "))) \\ _Charles R Greathouse IV_, Jul 25 2011

%o (Haskell)

%o a005846 n = a005846_list !! (n-1)

%o a005846_list = filter ((== 1) . a010051) a202018_list

%o -- _Reinhard Zumkeller_, Dec 09 2011

%o (PARI) {k=2; n=1; for(x=1, 100000, f=x^2+x+41; g=x^2+3*x+43; a=gcd(f, g-k); if(a>1, k=k+2); if(a==x+2-k/2, print(n" "a); n++))} \\ _Mike Winkler_, Oct 02 2013

%o (GAP) Filtered(List([0..100],n->n^2+n+41),IsPrime); # _Muniru A Asiru_, Apr 22 2018

%o (Magma) [a: n in [0..55] | IsPrime(a) where a is n^2+n+ 41]; // _Vincenzo Librandi_, Apr 24 2018

%Y Cf. A048988, A007634, A056561, A002378, A007635.

%Y Intersection of A000040 and A202018; A010051.

%Y Cf. A048059.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Henry Bottomley_, Jun 26 2000