login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223458
Primes whose first digit is a composite number.
2
41, 43, 47, 61, 67, 83, 89, 97, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881
OFFSET
1,1
LINKS
EXAMPLE
409 is a prime number whose first digit is 4, a composite number, so 409 is a term.
MAPLE
KD := proc() local a, b, d, e; a:= ithprime(n); b:=length(a); d:=a/(10^(b-1)); e:=floor(d); if isprime(e)=false and e>1 then RETURN (a): fi; end: seq(KD(), n=1..200);
PROG
(Python)
from sympy import primerange
from itertools import count, islice
def agen(): yield from (p for e in count(1) for k in [4, 6, 8, 9] for p in primerange(k*10**e, (k+1)*10**e))
print(list(islice(agen(), 54))) # Michael S. Branicky, Jun 25 2022
CROSSREFS
Cf. A069090 (primes none of whose proper initial segments are primes).
Sequence in context: A005846 A273756 A154498 * A243429 A345346 A062669
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Aug 24 2013
STATUS
approved