login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223456
Composite numbers whose number of proper divisors has a prime number of proper divisors.
2
16, 36, 48, 64, 80, 81, 100, 112, 120, 144, 162, 168, 176, 196, 208, 210, 216, 225, 256, 264, 270, 272, 280, 304, 312, 324, 330, 368, 378, 384, 390, 400, 405, 408, 440, 441, 456, 462, 464, 484, 496, 510, 512, 520, 546, 552, 567, 570, 576, 592, 594, 616, 625
OFFSET
1,1
LINKS
FORMULA
{ n: n in A002808 and A032741(A032741(n)) in A000040}.
(1 - A010051(a(n))) * A010051(a032741(a032741(a(n)))) = 1. - Reinhard Zumkeller, Sep 22 2013
EXAMPLE
a(1) = 16, which has 4 proper divisors (1, 2, 4, 8). 4 has 2 proper divisors, 2 is prime. 2 steps were needed.
MAPLE
isA223456 := proc(n)
local npd ;
if not isprime(n) and n >=4 then
npd := A032741(n) ;
if isprime( A032741(npd)) then
true;
else
false;
end if ;
else
false;
end if;
end proc:
for n from 16 to 630 do
if isA223456(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Sep 18 2013
MATHEMATICA
Select[Range[1000], PrimeQ[DivisorSigma[0, DivisorSigma[0, #] - 1] - 1] &] (* Alonso del Arte, Jul 21 2013 *)
PROG
(C#)
// data
uint size = Math.Power(2, 30);
uint[] divisors = new uint[size]
List<uint> A000040 = new List<uint>();
List<uint> A063806 = new List<uint>();
List<uint> A223456 = new List<uint>();
List<uint> A223457 = new List<uint>();
// calculate
for( uint i = 1; i < size; i++ )
for( uint j = i * 2; j < size; j += i )
divisors[j]++;
// assign
for( uint i = 2; i < size; i++ )
if( divisors[i] == 1 )
// A000040: Numbers with a only one proper divisor.
A000040.Add( i );
else if( divisors[divisors[i]] == 1 )
// A063806: Numbers with a prime number of proper divisors.
A063806.Add( i );
else if( divisors[divisors[divisors[i]]] == 1 )
// Numbers with a nonprime number of proper divisors
// which itself has prime number of proper divisors.
A223456.Add( i );
else if( divisors[divisors[divisors[divisors[i]]]] == 1 )
// Numbers with a nonprime number of proper divisors
// which itself has a nonprime number of proper divisors
// which itself has prime number of proper divisors.
A223457.Add( i );
(Haskell)
a223456 n = a223456_list !! (n-1)
a223456_list = filter ((== 1 ) . a010051 . a032741 . a032741) a002808_list
-- Reinhard Zumkeller, Sep 22 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved