login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347747
Positive integers with final digit 6 that are equal to the product of two integers ending with the same digit.
2
16, 36, 56, 96, 136, 156, 176, 196, 216, 256, 276, 296, 336, 376, 396, 416, 456, 476, 496, 516, 536, 576, 616, 636, 656, 676, 696, 736, 756, 776, 816, 856, 876, 896, 936, 976, 996, 1016, 1036, 1056, 1096, 1116, 1136, 1156, 1176, 1196, 1216, 1236, 1256, 1296, 1316
OFFSET
1,1
COMMENTS
Union of A324297 and A347253.
LINKS
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
16 = 4*4, 36 = 6*6, 56 = 4*14, 96 = 4*24 = 6*16, 136 = 4*34, 156 = 6*26, ...
MATHEMATICA
a={}; For[n=0, n<=150, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && 10*n+6>Max[a] || Mod[10*n+6, 10*k+6]==0 && Mod[(10*n+6)/(10*k+6), 10]==6 && 10*n+6>Max[a], AppendTo[a, 10*n+6]]]]; a
tisdQ[n_]:=AnyTrue[{Mod[#, 10], Mod[n/#, 10]}&/@Divisors[n], #[[1]] == #[[2]]&]; Select[10 Range[150]+6, tisdQ] (* Harvey P. Dale, Dec 27 2021 *)
PROG
(Python)
def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(1317)) # Michael S. Branicky, Sep 12 2021
(PARI) isok(m) = if ((m % 10) == 6, fordiv(m, d, if ((d % 10) == (m/d % 10), return(1)))); \\ Michel Marcus, Oct 06 2021
CROSSREFS
Cf. A017341 (supersequence), A324297, A347253, A347749.
Sequence in context: A223456 A377563 A103843 * A359767 A253260 A144548
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Sep 12 2021
STATUS
approved