login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347750
Number of intersection points when every pair of vertices of a row of n adjacent congruent rectangles are joined by an infinite line.
4
0, 5, 17, 57, 133, 297, 525, 925, 1477, 2289, 3277, 4701, 6437, 8805, 11541, 14917, 18869, 23893, 29509, 36473, 44349, 53545, 63605, 75629, 88901, 104325, 120981, 139913, 160581, 184409, 209885, 238989, 270525, 305413, 342413, 383301, 426949, 475757, 527205, 583261, 642821, 708717, 777829
OFFSET
0,2
LINKS
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 3.
Scott R. Shannon, Image for n = 4.
Scott R. Shannon, Image for n = 5.
Scott R. Shannon, Image for n = 6.
FORMULA
a(n) = A347751(n) - A344993(n) + 1.
EXAMPLE
a(1) = 5 as connecting the four vertices of a single rectangle forms one new vertex inside the rectangle, giving a total of 4 + 1 = 5 total intersection points.
a(2) = 17 as connecting the six vertices of two adjacent rectangles forms seven vertices inside the rectangles while also forming four vertices outside the rectangles. The total number of intersection points is then 6 + 7 + 4 = 17.
See the linked images for further examples.
CROSSREFS
Cf. A344993 (number of polygons), A347751 (number of edges), A331755 (number of intersections on or inside the rectangles).
Sequence in context: A112410 A146271 A145371 * A112044 A027030 A033538
KEYWORD
nonn
AUTHOR
STATUS
approved