login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347749
Number of positive integers with n digits and final digit 6 that are equal to the product of two integers ending with the same digit.
2
0, 4, 33, 352, 3597, 36781, 374071, 3790993, 38326689, 386782889
OFFSET
1,2
COMMENTS
a(n) is the number of n-digit numbers in A347747.
FORMULA
a(n) < A052268(n).
a(n) = A337856(n) + A347255(n) - A347748(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
MATHEMATICA
Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union[Union@Flatten@Table[a*b, {a, 4, Floor[hi/4], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 6, Floor[hi/6], 10}, {b, a, Floor[hi/a], 10}]], lo<#<hi&], {n, 8}]
PROG
(Python)
def a(n):
lo, hi = 10**(n-1), 10**n
return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) | set(a*b for a in range(6, hi//6+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 06 2021
KEYWORD
nonn,base,hard,more
AUTHOR
Stefano Spezia, Sep 12 2021
EXTENSIONS
a(9)-a(10) from Michael S. Branicky, Oct 06 2021
STATUS
approved