Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 21 2021 01:47:43
%S 0,4,33,352,3597,36781,374071,3790993,38326689,386782889
%N Number of positive integers with n digits and final digit 6 that are equal to the product of two integers ending with the same digit.
%C a(n) is the number of n-digit numbers in A347747.
%F a(n) < A052268(n).
%F a(n) = A337856(n) + A347255(n) - A347748(n).
%F Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
%t Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union[Union@Flatten@Table[a*b, {a, 4, Floor[hi/4], 10}, {b, a, Floor[hi/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[hi/6], 10}, {b, a, Floor[hi/a], 10}]], lo<#<hi&], {n,8}]
%o (Python)
%o def a(n):
%o lo, hi = 10**(n-1), 10**n
%o return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) | set(a*b for a in range(6, hi//6+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
%o print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Oct 06 2021
%Y Cf. A017341, A052268, A324297, A337856, A347253, A347255, A347747, A347748.
%K nonn,base,hard,more
%O 1,2
%A _Stefano Spezia_, Sep 12 2021
%E a(9)-a(10) from _Michael S. Branicky_, Oct 06 2021