login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers with final digit 6 that are equal to the product of two integers ending with the same digit.
2

%I #14 Dec 27 2021 15:15:01

%S 16,36,56,96,136,156,176,196,216,256,276,296,336,376,396,416,456,476,

%T 496,516,536,576,616,636,656,676,696,736,756,776,816,856,876,896,936,

%U 976,996,1016,1036,1056,1096,1116,1136,1156,1176,1196,1216,1236,1256,1296,1316

%N Positive integers with final digit 6 that are equal to the product of two integers ending with the same digit.

%C Union of A324297 and A347253.

%H Harvey P. Dale, <a href="/A347747/b347747.txt">Table of n, a(n) for n = 1..1000</a>

%F Lim_{n->infinity} a(n)/a(n-1) = 1.

%e 16 = 4*4, 36 = 6*6, 56 = 4*14, 96 = 4*24 = 6*16, 136 = 4*34, 156 = 6*26, ...

%t a={}; For[n=0, n<=150, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && 10*n+6>Max[a] || Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a], AppendTo[a, 10*n+6]]]]; a

%t tisdQ[n_]:=AnyTrue[{Mod[#,10],Mod[n/#,10]}&/@Divisors[n],#[[1]] == #[[2]]&]; Select[10 Range[150]+6,tisdQ] (* _Harvey P. Dale_, Dec 27 2021 *)

%o (Python)

%o def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))

%o print(aupto(1317)) # _Michael S. Branicky_, Sep 12 2021

%o (PARI) isok(m) = if ((m % 10) == 6, fordiv(m, d, if ((d % 10) == (m/d % 10), return(1)))); \\ _Michel Marcus_, Oct 06 2021

%Y Cf. A017341 (supersequence), A324297, A347253, A347749.

%K nonn,base

%O 1,1

%A _Stefano Spezia_, Sep 12 2021