login
A359767
Numbers k such that A065043(k) = 1 but A359764(k) = 0, where A359764 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even number of prime factors).
6
16, 36, 64, 81, 96, 100, 160, 196, 216, 224, 225, 240, 256, 336, 352, 360, 384, 416, 441, 484, 486, 504, 528, 540, 544, 560, 576, 600, 608, 624, 625, 640, 676, 729, 736, 756, 792, 810, 816, 880, 896, 900, 912, 928, 936, 960, 992, 1000, 1024, 1040, 1089, 1104, 1134, 1156, 1176, 1184, 1188, 1215, 1224, 1225
OFFSET
1,1
PROG
(PARI)
A065043(n) = (1 - (bigomega(n)%2));
memoA359763 = Map();
A359763(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359763, n, &v), v, v = -sumdiv(n, d, if(d<n, A065043(n/d)*A359763(d), 0)); mapput(memoA359763, n, v); (v)));
A359764(n) = (A359763(n)%2);
isA359767(n) = (A065043(n)&&!(A359764(n)));
CROSSREFS
Cf. also A359784.
Setwise difference A028260 \ A359765.
Setwise difference A359766 \ A026424.
Subsequence of A013929.
Sequence in context: A377563 A103843 A347747 * A253260 A144548 A161753
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 13 2023
STATUS
approved