login
A007634
Numbers k such that k^2 + k + 41 is composite.
(Formerly M5269)
28
40, 41, 44, 49, 56, 65, 76, 81, 82, 84, 87, 89, 91, 96, 102, 104, 109, 117, 121, 122, 123, 126, 127, 130, 136, 138, 140, 143, 147, 155, 159, 161, 162, 163, 164, 170, 172, 173, 178, 184, 185, 186, 187, 190, 201, 204, 205, 207, 208, 209, 213, 215, 216, 217
OFFSET
1,1
COMMENTS
A subset of this sequence is shown in A055390. - Matt C. Anderson, Jan 05 2014
If prime p divides m^2+m+41, then m+p*j is in the sequence for all j >= 1. - Robert Israel, Nov 24 2017
Euler noted that the first 40 values of this polynomial, starting with k=0, are all primes. - Harvey P. Dale, Jul 25 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014
MAPLE
remove(n -> isprime(n^2+n+41), [$1..1000]); # Robert Israel, Nov 24 2017
MATHEMATICA
Select[Range[220], !PrimeQ[#^2 + # + 41] &] (* Vincenzo Librandi, Sep 28 2012 *)
PROG
(Magma) [n: n in [0..220] | not IsPrime(n^2 + n + 41)]; // Vincenzo Librandi, Sep 28 2012
(PARI) is(n)=!isprime(n^2+n+41) \\ Charles R Greathouse IV, Apr 25 2014
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved