login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082763
Roman numeral contains an asymmetric symbol (L).
1
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
OFFSET
1,1
COMMENTS
I,V,X,C,D,M - and even the vinculum (bar) and apostrophus (backwards "C") - are each symmetric: horizontally, vertically, or both.
Numbers containing a 4 when decimally encoded with A061493. - Reinhard Zumkeller, Apr 14 2013
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..2000 (complete up to 3999)
Eric Weisstein's World of Mathematics, Roman Numeral.
FORMULA
a(n+50) = a(n) + 100 for n >= 1 [a(n+L) = a(n) + C for n >= I], a(1) = 40 [a(I) = XL], a(n+1) = a(n) + 1 for 1 <= n <= 49 [a(n+I) = a(n) + I for I <= n <= XLIX]; so a(n) = floor((n-1)/50)*100 + 40 + ((n-1)(mod 50)) for n >= 1 [a(n) = floor((n-I)/L)*C + XL + ((n-I)(mod L)) for n >= I].
EXAMPLE
40 = XL, 89 = LXXXIX, 140 = CXL.
MAPLE
with(StringTools): for n from 1 to 152 do if(Search("L", convert(n, roman)) > 0)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
MATHEMATICA
Select[Range[200], StringCases[RomanNumeral[#], "L"]!={}&] (* Harvey P. Dale, Jun 10 2023 *)
PROG
(PARI) /* "%" use below is actually identical to lift(Mod(n-1, 50)) */ /* (n-1)<backslash>50 could be used for integer division below */ /* instead of floor, but the OEIS sometimes loses <backslash> */ /* characters depending upon where on a submitted line they are. */ a(n)=floor((n-1)/50)*100+40+(n-1)%50 for(n=1, 125, print1(a(n), ", "))
(Haskell)
a082763 n = a082763_list !! (n-1)
a082763_list = filter (containsL . a061493) [1..3999] where
containsL x = d == 4 || x > 0 && containsL x' where
(x', d) = divMod x 10
-- Reinhard Zumkeller, Apr 14 2013
CROSSREFS
Cf. A006968 (Roman numerals main entry), A078715 (Palindromic Roman numerals).
Sequence in context: A023482 A273770 A165861 * A007634 A228184 A128843
KEYWORD
base,easy,nonn
AUTHOR
Rick L. Shepherd, May 21 2003
STATUS
approved