The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201998 Positive numbers n such that n^2 + n + 41 is composite and there are no positive integers c such that n = c*x^2 + (c + 1)*x + c*41 for an integer x. 4
 244, 249, 251, 266, 270, 295, 301, 336, 344, 389, 399, 407, 416, 418, 445, 449, 454, 466, 489, 494, 496, 500, 506, 527, 531, 545, 547, 563, 570, 571, 582, 583, 585, 611, 612, 620, 622, 624, 628, 630, 636, 652, 661, 662, 663, 679, 693, 699 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The composition of functions k(x) factors. k(x) = (x^2 + x + 41)*(c^2*x^2 + (c^2 + 2*c)*x + c^2*41 + c + 1).  So k(x) is the product of two integers greater than one and thus composite. REFERENCES John Stillwell, Elements of Number Theory, Springer, 2003, page 3. LINKS Matt C. Anderson A prime producing polynomial writeup MAPLE maxn:=1000: A:={}: for n from 1 to maxn do g:=n^2+n+41: if isprime(g)=false then A:=A union {n}: end if: end do: # The set A contains values n such that n^2+n+41 is composite and n < maxn. c:=1: x:=-1: p:=41: q:=c*x^2-(c+1)*x+c*p: A2:=A: while q < maxn do while q < maxn do A2:=A2 minus {q}: A2:=A2 minus {c*x^2+(c+1)*x+c*p}: x:=x+1: q:=c*x^2-(c+1)*x+c*p: end do: c:=c+1: x:=-1: q:=c*x^2-(c+1)*x+c*p: end do: A2; MATHEMATICA Reap[For[n=1, n<700, n++, If[!PrimeQ[n^2+n+41], If[Reduce[c>0 && n == c*x^2+(c+1)*x+41*c , {c, x}, Integers] === False, Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Apr 30 2014 *) CROSSREFS Cf. A007634 (n^2 + n + 41 is composite). Cf. A235381 (similar to this sequence). Sequence in context: A243774 A051002 A044987 * A234262 A031786 A328206 Adjacent sequences:  A201995 A201996 A201997 * A201999 A202000 A202001 KEYWORD nonn AUTHOR Matt C. Anderson, Dec 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 03:41 EDT 2022. Contains 356046 sequences. (Running on oeis4.)