OFFSET
1,1
COMMENTS
Numbers n such that n^2 + n + 41 is composite and n - 40 is not a square. - Charles R Greathouse IV, Sep 14 2014
Note that if h(n) = n^2 + n + 41, and k(x) = x^2 + 40, then the composition of functions h(k(x)) has an algebraic factorization: h(k(x)) = (x^2 + 40)^2 + (x^2 + 40) + 41 = (x^2 + x + 41)*(x^2 - x + 41). Since both of the expressions in the above product are integers greater than 1, h(k(x)) is composite. - Matt C. Anderson, Oct 24 2012
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Sep 14 2014
MAPLE
A007634 := {}:
for n from 0 to 1000 do
k := n^2+n+41:
end do:
pv1 := Vector(1000, j -> (j-1)^2+40):
p1 := convert(pv1, set):
remove(t -> issqr(t-40) or isprime(t^2+t+41), [$1..1000]); # Robert Israel, Nov 24 2017
MATHEMATICA
Select[Range[260], CompositeQ[#^2+#+41]&&!IntegerQ[Sqrt[#-40]]&] (* Harvey P. Dale, Oct 20 2015 *)
PROG
(PARI) is(n)=!isprime(n^2+n+41) && !issquare(n-40) \\ Charles R Greathouse IV, Sep 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
J. Lowell, Oct 08 2000
EXTENSIONS
More terms from David Wasserman, Mar 19 2002
STATUS
approved