The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055389 a(0) = 1, then twice the Fibonacci sequence. 14
 1, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of sequences over the alphabet {0,1} such that all maximal blocks (of both 0's and 1's) have odd length. E.g., a(4) = 6 because we have 0001, 0101, 0111, 1000, 1010, 1110. - Geoffrey Critzer, Mar 06 2012 LINKS Michael De Vlieger, Table of n, a(n) for n = 0..4785 Yuhong Guo, Some Identities for Palindromic Compositions Without 2's, Journal of Mathematical Research with Applications 38.2 (2018): 130-136. Yu-hong Guo, Some Identities for Palindromic Compositions, J. Int. Seq., Vol. 21 (2018), Article 18.6.6. Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5. Index entries for linear recurrences with constant coefficients, signature (1,1). FORMULA G.f.: (1 + x - x^2)/(1 - x - x^2). E.g.f.: 1 + 4*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Apr 18 2022 MATHEMATICA Join[{1}, Table[2*Fibonacci[n], {n, 70}]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *) CoefficientList[Series[(1 + x - x^2)/(1 - x - x^2), {x, 0, 38}], x] (* Michael De Vlieger, Jun 14 2018 *) PROG (PARI) a(n)=if(n, 2*fibonacci(n), 1) \\ Charles R Greathouse IV, Oct 03 2016 (Magma) [1] cat [2*Fibonacci(n): n in [1..40]]; // G. C. Greubel, Apr 28 2021 (Sage) [1]+[2*fibonacci(n) for n in (1..40)] # G. C. Greubel, Apr 28 2021 CROSSREFS Essentially the same as A006355. Cf. A000045. Sequence in context: A262258 A293633 A006355 * A163733 A198834 A270925 Adjacent sequences: A055386 A055387 A055388 * A055390 A055391 A055392 KEYWORD easy,nonn AUTHOR Robert G. Wilson v, Jul 05 2000 EXTENSIONS More terms from James A. Sellers, Jul 07 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 05:33 EST 2024. Contains 370379 sequences. (Running on oeis4.)