OFFSET
0,3
COMMENTS
Number of cvtemplates at n-2 letters given <= 2 consecutive consonants or vowels (n >= 4).
Number of (n,2) Freiman-Wyner sequences.
Diagonal sums of the Riordan array ((1-x+x^2)/(1-x), x/(1-x)), A072405 (where this begins 1,0,1,1,1,1,...). - Paul Barry, May 04 2005
Central terms of the triangle in A094570. - Reinhard Zumkeller, Mar 22 2011
Pisano period lengths: 1, 1, 8, 3, 20, 8, 16, 6, 24, 20, 10, 24, 28, 16, 40, 12, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
Also the number of matchings in the (n-2)-pan graph for n >= 5. - Eric W. Weisstein, Oct 03 2017
a(n) is the number of bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 16, 51.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..4786 (next term has 1001 digits)
Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
Ian F. Blake, The enumeration of certain run length sequences, Information and Control, 55 (1982), 222-237.
A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
Steven Finch, Variance of longest run duration in a random bitstring, arXiv:2005.12185 [math.CO], 2020.
Enoch Haga, Room for Expansion, Word Ways, 33 (No. 2, 2000), pp. 106-113 (see p. 110).
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 898.
Sergey Kitaev and Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
Noriaki Sannomiya, H. Katsura, and Y. Nakayama, Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion, arXiv preprint arXiv:1612.02285 [cond-mat.str-el], 2016-2017. See Table II, line 2.
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
a(n+2) = F(n-1) + F(n+2), for n > 0.
G.f.: (1-x+x^2)/(1-x-x^2). - Paul Barry, May 04 2005
a(n) = A119457(n-1,n-2) for n > 2. - Reinhard Zumkeller, May 20 2006
a(n) = 2*F(n-1) for n > 0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + x^2 + (2*k+3)*x - x*(2*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A118658(n) - 0^n. - M. F. Hasler, Nov 05 2014
a(n) = (2^(-n)*((1-r)^n*(1+r) + (-1+r)*(1+r)^n)) / r for n > 0, where r=sqrt(5). - Colin Barker, Jan 28 2017
a(n) = a(n-1) + a(n-2) for n >= 3. - Armend Shabani, Nov 25 2020
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1. - Stefano Spezia, Apr 18 2022
a(n) = F(n-3) + F(n-2) + F(n-1) for n >= 3, where F(n)=A000045(n). - Gergely Földvári, Aug 03 2024
EXAMPLE
a(6)=10 because we have: 000000, 000011, 000111, 001100, 001111, 110000, 110011, 111000, 111100, 111111. - Geoffrey Critzer, Jan 26 2014
MAPLE
a:= n-> if n=0 then 1 else (Matrix([[2, -2]]). Matrix([[1, 1], [1, 0]])^n) [1, 1] fi: seq(a(n), n=0..38); # Alois P. Heinz, Aug 18 2008
a := n -> ifelse(n=0, 1, -2*I^n*ChebyshevU(n-2, -I/2)):
seq(simplify(a(n)), n = 0..38); # Peter Luschny, Dec 03 2023
MATHEMATICA
Join[{1}, Last[#] - First[#] & /@ Partition[Fibonacci[Range[-1, 40]], 4, 1]] (* Harvey P. Dale, Sep 30 2011 *)
Join[{1}, LinearRecurrence[{1, 1}, {0, 2}, 38]] (* Jean-François Alcover, Sep 23 2017 *)
Join[{1}, Table[2 Fibonacci[n], {n, 0, 20}]] (* Eric W. Weisstein, Oct 03 2017 *)
Join[{1}, 2 Fibonacci[Range[0, 20]]] (* Eric W. Weisstein, Oct 03 2017 *)
CoefficientList[Series[(-1 + x - x^2)/(-1 + x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
PROG
(PARI) a(n)=if(n, 2*fibonacci(n-1), 1) \\ Charles R Greathouse IV, Mar 14 2012
(Haskell)
a006355 n = a006355_list !! n
a006355_list = 1 : fib2s where
fib2s = 0 : map (+ 1) (scanl (+) 1 fib2s)
-- Reinhard Zumkeller, Mar 20 2013
(Magma) [1] cat [Lucas(n) - Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Aug 02 2014
(PARI) my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^2)) \\ Altug Alkan, Nov 01 2015
CROSSREFS
Except for initial term, = 2*Fibonacci numbers (A000045).
KEYWORD
nonn,easy,nice
AUTHOR
David M. Bloom
EXTENSIONS
Corrected by T. D. Noe, Oct 31 2006
STATUS
approved