login
A094570
Triangle T(n,k) read by rows: T(n,k) = F(k) + F(n-k) where F(n) is the n-th Fibonacci number.
4
0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 5, 4, 3, 3, 4, 5, 8, 6, 4, 4, 4, 6, 8, 13, 9, 6, 5, 5, 6, 9, 13, 21, 14, 9, 7, 6, 7, 9, 14, 21, 34, 22, 14, 10, 8, 8, 10, 14, 22, 34, 55, 35, 22, 15, 11, 10, 11, 15, 22, 35, 55, 89, 56, 35, 23, 16, 13, 13, 16, 23, 35, 56, 89, 144, 90, 56, 36, 24, 18, 16, 18, 24, 36, 56, 90, 144
OFFSET
0,5
LINKS
FORMULA
Row n: F(0)+F(n), F(1)+F(n-1), F(2)+F(n-2), ..., F(n-1)+F(1), F(n)+F(0).
From Reinhard Zumkeller, Mar 21 2011: (Start)
T(n,0) = T(n,n) = A000045(n).
T(2*n,n) = A006355(n+1).
T(n,k) = A141169(n,k) + A141169(n,n-k). (End)
Sum(T(n,k), 0<=k<=n) = 2*A000071(n+2) = 2*A000045(n+2) - 2. - Philippe Deléham, Apr 07 2013
EXAMPLE
Triangle begins:
0;
1, 1;
1, 2, 1;
2, 2, 2, 2;
3, 3, 2, 3, 3;
5, 4, 3, 3, 4, 5;
8, 6, 4, 4, 4, 6, 8;
13, 9, 6, 5, 5, 6, 9, 13;
21, 14, 9, 7, 6, 7, 9, 14, 21;
PROG
(PARI) row(n) = vector(n+1, k, k--; fibonacci(k)+fibonacci(n-k)); \\ Michel Marcus, Mar 22 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 12 2004
STATUS
approved