OFFSET
0,4
COMMENTS
Cover of a set is (<=2)-cover if every element of the set is covered with at most two blocks of the cover.
FORMULA
E.g.f.: exp(-x-x^2/2*(exp(y)-1))*(Sum_{n>=0} exp(y*binomial(n+1, 2))*x^n/n!).
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 3, 1;
1, 12, 20, 7;
1, 39, 169, 186, 59, 3;
1, 120, 1160, 2755, 2243, 661, 55;
...
MATHEMATICA
rows = 9; m = rows + 2;
egf = Exp[-x - (x^2/2)*(Exp[y]-1)]*Sum[Exp[y*Binomial[n+1, 2]]*(x^n/n!), {n, 0, m}];
cc = CoefficientList[# + O[x]^m, x]& /@ CoefficientList[egf + O[y]^m, y];
(Range[0, Length[cc]-1]! * cc)[[1 ;; rows]] /. {0, a__} :> {a} // Flatten (* Jean-François Alcover, May 13 2019 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Goran Kilibarda, Vladeta Jovovic, May 12 2004
STATUS
approved