login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373168
Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ).
0
1, 1, 1, 3, 1, 1, 13, 2, 2, 1, 73, 6, 6, 3, 1, 501, 24, 24, 12, 4, 1, 4051, 120, 120, 60, 20, 5, 1, 37633, 720, 720, 360, 120, 30, 6, 1, 394353, 5040, 5040, 2520, 840, 210, 42, 7, 1, 4596553, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 58941091, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
OFFSET
0,4
LINKS
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 13.
FORMULA
T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.
EXAMPLE
The triangle begins:
1;
1, 1;
3, 1, 1;
13, 2, 2, 1;
73, 6, 6, 3, 1;
501, 24, 24, 12, 4, 1;
4051, 120, 120, 60, 20, 5, 1;
...
MATHEMATICA
T[n_, 0]:=n!SeriesCoefficient[Exp[x/(1-x)], {x, 0, n}]; T[n_, k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
Triangle A094587 with 1st column A000262.
Sequence in context: A129619 A094573 A055154 * A338875 A015112 A174690
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 26 2024
STATUS
approved