OFFSET
0,4
LINKS
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 13.
FORMULA
T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.
EXAMPLE
The triangle begins:
1;
1, 1;
3, 1, 1;
13, 2, 2, 1;
73, 6, 6, 3, 1;
501, 24, 24, 12, 4, 1;
4051, 120, 120, 60, 20, 5, 1;
...
MATHEMATICA
T[n_, 0]:=n!SeriesCoefficient[Exp[x/(1-x)], {x, 0, n}]; T[n_, k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 26 2024
STATUS
approved