OFFSET
0,2
COMMENTS
The p=10 member of the p-family of sequences {(n+p-1)!/p!}, n >= 1.
The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=11) ~ exp(-x)/x*(1 - 11/x + 132/x^2 - 1716/x^3 + 24024/x^4 - 360360/x^5 + 5765760/x^6 - ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
a(n) = (n+10)!/10!
E.g.f.: 1/(1-x)^11.
a(n) = A173333(n+10,10). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n+10,n) / 11. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 3628800*e - 9864100.
Sum_{n>=0} (-1)^n/a(n) = 3628800/e - 1334960. (End)
MATHEMATICA
a[n_] := (n + 10)!/10!; Array[a, 20, 0] (* Amiram Eldar, Jan 15 2023 *)
PROG
(Magma) [Factorial(n+10)/3628800: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
(Haskell)
a051431 = (flip div 3628800) . a000142 . (+ 10)
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved