|
|
A245334
|
|
A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.
|
|
25
|
|
|
1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
row(0) = {1}; row(n+1) = row(n) multiplied by n and prepended with (n+1);
A111063(n+1) = sum of n-th row;
T(2*n,n) = A002690(n), central terms;
T(n,0) = n + 1;
T(n,1) = A000290(n), n > 0;
T(n,2) = A011379(n-1), n > 1;
T(n,3) = A047927(n), n > 2;
T(n,4) = A192849(n-1), n > 3;
T(n,5) = A000142(5) * A027810(n-5), n > 4;
T(n,6) = A000142(6) * A027818(n-6), n > 5;
T(n,7) = A000142(7) * A056001(n-7), n > 6;
T(n,8) = A000142(8) * A056003(n-8), n > 7;
T(n,9) = A000142(9) * A056114(n-9), n > 8;
T(n,n-10) = 11 * A051431(n-10), n > 9;
T(n,n-9) = 10 * A049398(n-9), n > 8;
T(n,n-8) = 9 * A049389(n-8), n > 7;
T(n,n-7) = 8 * A049388(n-7), n > 6;
T(n,n-6) = 7 * A001730(n), n > 5;
T(n,n-5) = 6 * A001725(n), n > 5;
T(n,n-4) = 5 * A001720(n), n > 4;
T(n,n-3) = 4 * A001715(n), n > 2;
T(n,n-2) = A070960(n), n > 1;
T(n,n-1) = A052849(n), n > 0;
T(n,n) = A000142(n);
T(n,k) = A137948(n,k) * A007318(n,k), 0 <= k <= n.
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
|
|
FORMULA
|
T(n,k) = n!*(n+1-k)/(n-k)!. - Werner Schulte, Sep 09 2017
|
|
EXAMPLE
|
. 0: 1;
. 1: 2, 1;
. 2: 3, 4, 2;
. 3: 4, 9, 12, 6;
. 4: 5, 16, 36, 48, 24;
. 5: 6, 25, 80, 180, 240, 120;
. 6: 7, 36, 150, 480, 1080, 1440, 720;
. 7: 8, 49, 252, 1050, 3360, 7560, 10080, 5040;
. 8: 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320;
. 9: 10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
|
|
MATHEMATICA
|
Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)
|
|
PROG
|
(Haskell)
a245334 n k = a245334_tabl !! n !! k
a245334_row n = a245334_tabl !! n
a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
|
|
CROSSREFS
|
Cf. A111063 (row sums), A240993 (row products), A002690 (central terms).
Cf. A000290, A011379, A027810, A027818, A047927, A056001, A056003, A056114, A192849.
Cf. A000142, A001715, A001720, A001725, A001730, A049388, A049389, A049398, A051431, A052849, A070960.
Cf. A007318, A137948.
Sequence in context: A128544 A120058 A208532 * A102756 A086614 A108959
Adjacent sequences: A245331 A245332 A245333 * A245335 A245336 A245337
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Reinhard Zumkeller, Aug 30 2014
|
|
STATUS
|
approved
|
|
|
|