OFFSET
0,2
COMMENTS
Number of 11-subsequences of [ 1, n ] with just 5 contiguous pairs.
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, Carus Mathematical Monographs No. 14, John Wiley and Sons, 1963, pp. 1-8.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (1+5*x)/(1-x)^7.
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 5*Pi^2/6 - 1025/144.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^2/12 - 160*log(2)/3 + 4865/144. (End)
MAPLE
[seq(n*(n-1)*(n-2)*(n-3)*(n-4)^2/5!, n=5..33)]; # Zerinvary Lajos, Oct 19 2006
MATHEMATICA
Table[(n+1)Binomial[n+5, 5], {n, 0, 30}] (* Harvey P. Dale, Jul 29 2014 *)
CoefficientList[Series[(1 + 5 x)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
PROG
(Magma) [(n+1)*Binomial(n+5, 5): n in [0..40]] /* or */ [n*(n-1)*(n-2)*(n-3)*(n-4)^2/120: n in [5..40]]; // Vincenzo Librandi, Jul 30 2014
(Haskell)
a027810 n = (n + 1) * a007318' (n + 5) 5
-- Reinhard Zumkeller, Aug 31 2014
(PARI) a(n)=n*(n^5+16*n^4+100*n^3+310*n^2+499*n+394)/120+1 \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
EXTENSIONS
Two redundant formulas deleted by N. J. A. Sloane, Jul 30 2014
STATUS
approved